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Vapor-liquid equilibrium at 101.3 kPa has been determined for the binary systems of 1.3-dioxolane, 
1-chlorobutane and 2-chlorobutane. The binary systems 1,3-dioxolane-chlorobutanes exhibit positive 
deviations from ideal behavior while the binary 1-chlorobutane-2-chlorobutane behaves ideally. The activity 
coefficients and boiling point of the solution were correlated with its composition by the Redlich-Kister and 
Wisniak-Tamir equations. 

KEY WORDS: Vapor-liquid equilibrium, activities, organic solutions 

Cyclic ethers and chlorobutanes are frequently used in the chemical industry as 
solvents and intermediates. The present work was undertaken to measure vapor-liquid 
equilibria (VLE) data for the title systems for which no isobaric data are available. This 
is part of a program to determine UNIFAC parameters for halogentated organic 
compounds. 

EXPERIMENTAL 

Purity of Materials 

1, 3-dioxolane (99.4 + mole%), 1-chlorobutane (99.84 + moleo%) and 2-chlorobutane 
(99.9 +mole%) were purchased from Merck. The reagents were used without further 
purification after gas chromatography failed to show any significant impurities. 
Properties and purity (as determined by GLC) of the pure components appear in 
Table I. 

Apparatus and Procedure 

An all-glass modified Dvorak and Boublik recirculation still' was used in the 
VLE measurements. The experimental features have been described in a previous 
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178 J. WISNIAK et nl. 

Table I Gas-chromatography analysis. 

Sysrem 

Tempernture ( K )  

Column filling 1 njector Column Detector 

1, 3-dioxolane- 1 -chlorobutane OV- 17 358.15 333.15 533.15 
2-chlorobutane-113-dioxolane Carbowax ZOM 573.1 5 573.15 533.15 
2-chlorobutane-1 -chlorobutane SE-30 423.15 333.15 533.15 

Table 11 
and normal boiling points T of pure components. 

Mole % GLC purities, refractive index no at Na D line, 

Component (Purity, mole ",) no (298.15 K )  TIK 

1.3-dioxolane (99.94) 1.3980' 348.60" 
1.3984b 348.55' 

1-chlorobutane (99.8) 1.3999" 351.58" 
1 . 4 W b  351.58" 

2-chlorobutane (99.9) 1.3941" 341.24" 
1.394 1 341.25' 

a Measured; Reference 8; Reference 9; Reference 10 

publication2. All analyses were carried out by gas chromatography on a Gow-Mac 
series 550P apparatus provided with a thermal conductivity detector and a Spectra 
Physics Model SP 4290 electronic integrator. The column was 2 m long and 0.2cm in 
diameter, and the apparatus was operated under the conditions given in Table 11. Very 
good separation was achieved under these conditions, and calibration analyses with 
gravimetrically prepared samples were carried to convert the peak ratio to the weight 
composition of the sample. Concentration measurements were accurate to better than 
f 0.008 mole fraction units. The accuracy in determination of pressure P and tempera- 
ture T was at least * 0.1 kPa and 0.02 K, respectively. 

RESULTS 

The temperature T and liquid-phase xi and vapor-phase yi mole fraction measure- 
ments at P = 101.3 kPa are reported in Tables 111-V and Figure 1-4, together with 
the activity coefficients yi which were calculated from the following Eq. (3): 

yip: ( B i i - u ; ) ( P - P P )  2 6 , , P  
+Yi RT RT lnyi=ln- + 

xi P 

where: 
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VAPOUR-LIQUID EQUILIBRIA IN MIXTURES 179 

Table 111 Experimental vapor-liquid equilibria data for 1,3-dioxolane (1) + 1-chlorobutane (2) at 
101.3 kPa. 

350.73 
350.02 
348.88 
347.63 
347.55 
346.94 
346.61 
346.32 
346.40 
346.60 
346.93 
347.13 
347.44 
347.77 
347.93 
347:21 

0.041 
0.088 
0.173 
0.306 
.0.315 
0.424 
0.505 
0.630 
0.696 
0.770 
0.822 
0.873 
0.898 
0.939 
0.947 
0.975 

0.060 
0.122 
0.225 
0.359 
0.369 
0.463 
0.528 
0.628 
0.684 
0.749 
0.801 
0.847 
0.872 
0.921 
0.93 1 
0.966 

1.3656 
1.3233 
1.2876 
1.2094 
1.2108 
1.1513 
1.1153 
1.0724 
1.0496 
1.0368 
1.0274 
1.0168 
1 .W62 
1 .OO60 
1.0031 
1.0017 

1.0057 
1.0094 
1.0175 
1.0424 
1.0422 
1.0751 
1.1100 
1.1824 
1.2142 
1.2725 
1.2903 
1.3765 
1.4313 
1.4566 
1.4570 
1.5091 

585 
589 
594 
600 
600 
603 
605 
606 
605 
605 
603 
602 
60 1 
600 
599 
597 

648 
65 1 
657 
662 
663 
666 
667 
669 
668 
667 
666 
665 
663 
662 
66 1 
660 

600 
603 
608 
614 
614 
617 
618 
620 
619 
619 
617 
616 
615 
613 
612 
61 1 

~~~~ ~ 

Table IV Experimental vapor-liquid equilibrium data for 2-chlorobutane-( 1),3-dioxolane (2) at 101.3 kPa. 

347.61 
346.80 
345.73 
344.98 
344.40 
343.83 
343.31 
342.84 
342.33 
341.60 
341.36 
341.83 
340.54 
340.57 
340.51 
340.91 

0.033 
0.059 
0.108 
0.146 
0.174 
0.204 
0.239 
0.277 
0.333 
0.443 
0.469 
0.591 
0.723 
0.808 
0.813 
0.946 

0.058 
0.099 
0.173 
0.217 
0.238 
0.275 
0.312 
0.348 
0.404 
0.50 1 
0.526 
0.624 
0.729 
0.805 
0.805 
0.940 

1.4544 
1.4217 
1.4005 
1.3286 
1.2439 
1.2469 
1.2265 
1.1971 
1.1739 
1.1187 
1.1175 
1.0692 
1.030 1 
1.0169 
1.0125 
1.0032 

1.0043 
1.0136 
1.0167 
1.0307 
1.0573 
1.0639 
1.0747 
1.0891 
1.0979 
1.1284 
1.1336 
1.1888 
1.2777 
1.3250 
1.3632 
1.4449 

687 
692 
698 
702 
705 
708 
71 1 
714 
717 
72 1 
722 
725 
727 
727 
727 
725 

663 
666 
67 1 
675 
678 
68 1 
683 
686 
688 
692 
693 
696 
698 
698 
698 
696 

673 
678 
683 
687 
690 
693 
696 
698 
70 1 
705 
706 
709 
71 1 
71 1 
71 1 
709 

The standard state for the calculation of activity coefficients is the pure component at 
the pressure and temperature of the solution. The pure component vapor pressures 
PP were calculated according to the Antoine equation: 
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Table V 
101.3 kPa. 

Experimental vapor-liquid equilibrium data for 2-chlorobutane (1)-1-chlorobutane (2) at 

350.43 
349.77 
348.59 
347.85 
346.94 
345.82 
345.48 
343.78 
342.81 
341.91 

0.092 0.121 
0.146 0.189 
0.255 0.317 
0.315 0.386 
0.41 1 0.483 
0.5 11 0.583 
0.542 0.616 
0.728 0.788 
0.822 0.863 
0.927 0.946 

1.0034 
1.0064 
0.9998 
1.0069 
0.99 1 6 
0.9948 
1.oO01 
1.0027 
1.0012 
1 .oooo 

1.0024 
1.0033 
1 .0043 
1.0046 
1.0120 
1.0183 
1.01 19 
0.9928 
1.0113 
1.3005 

673 
676 
682 
686 
69 1 
697 
699 
708 
714 
719 

650 
653 
658 
66 1 
666 
671 
673 
68 1 
686 
69 1 

660 
663 
669 
672 
677 
682 
684 
693 
698 
703 

346 345 0 i. 0.2' 0.4 0.6 0.8 

XI P Y I  

Figure 1 Boiling temperature diagram for the system 1.3-dioxolane (I)-1-chlorobutane (2) at 101.3 kPa. 

where the constants A,, B,, Ci are reported in Table VI. The molar virial coefficeints 
Bii and Bij  were estimated by the method of O'Connell and Prausnitz4 using the 
molecular parameters suggested by the authors and assuming the association par- 
ameter q to be zero. The last two terms in Eq. 1 contributed less than 3% to the activity 
coefficient and their influence was important only at very dilute concentrations. The 
calculated activity coefficients are reported in Tables 111-V and are estimated accurate 
to within 3%. Inspection of Figures 1 and 3 points to the possibility of an azeotrope 
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*I 

Figure 2 Activity coefficients for the system 1,3-dioxolane (1)-1-chlorobutane (2) at 101.3 kPa. 

Figure 3 Boiling temperature diagram for the system 2-chlorobutane (1)-1,3-dioxoIane (2) at 101.3 kPa. 

in the systems of 1,3-dioxolane-chlorobutanes, which could not be investigated further 
because of limitations of the analytical method employed. The vapor-liquid equilibria 
data reported in Tables 111-V were found to be thermodynamically consistent by the 
Redlich-Kister test5 and by the L-W method of Wisniak6. The activity coefficients for 
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182 J. WISNIAK et al. 

2.0 

2-  CHLOROBUTA N E  (1)-1,3 - D I O X O L A N  E ( 2 )  

Figure 4 Activity coefficients for the system 2-chlorobutane (l)-l, 3-dioxolane (2) at 101.3 kPa. 

Table VI Antoine Coefficients, Eq. 3. 

compound Ai Bi Ci 

1,3-dioxolane ' 6.23182 1236.700 55.915 
1-chlorobutane' 6.05 154 1216.82 50.82 
2-chlorobutanez 6.12220 1245.2 38.75 

' Reference 9; Reference 10 

the 1,3-dioxolane-chlorobutane binaries were correlated by the Redlich-Kister 
expansion': 

Iny,/y, = B(x2 - x , )  + C ( 6 x , x 2  - 1) + D ( x 2  - x 1 ) ( 1  - 8 ~ 1 x 2 )  

+ E ( x ,  - Xl)2 ( l o x ,  x2 - 1) (4) 

The values of the pertinent parameters and statistics appear in Table VII. 
The excess Gibbs function of the two systems are presented in TableVIII and 

Figure 5 as the variation of the dimensionless number (Gibbs number) AGE/RT with 

Table VII Redlich-Kister coefficients, Eq. 4. 

System B C D E rmsd %' 

1,3-dioxolane + 1-chlorobutane (2) 0.1648 0.0219 - - 0.003 2.8 
2-chlorobutane (1)+ 1 ,  3-dioxolane (2) 0.1569 0.0043 0.0160 -0.0457 0.01 5.9 

average YO deviation 
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Table VIII Variation of AGE/RT with composition. 

I ,3-dioxolane + I -chlorobutane I ,3-dioxolane + 2-chlorobutane 
3 1  AGEJRT X I  AGE/RT 

O.OO0 
0.041 
0.088 
0.173 
0.306 
0.315 
0.424 
0.505 
0.630 
0.696 
0.770 
0.822 
0.873 
0.898 
0.939 
0.947 
0.975 
1 .OO0 

O.OO0 
0.018 
0.033 
a058 
0.087 
0.089 
0.101 
0.107 
0.106 
0.093 
0.083 
0.068 
0.055 
0.042 
0.029 
0.023 
0.012 
O.OO0 

O.OO0 
0.033 
0.059 
0.108 
0.146 
0.174 
0.204 
0.239 
0.277 
0.333 
0.443 
0.469 
0.591 
0.723 
0.808 
0.813 
0.946 
1 .Ooo 

0.000 
0.016 
0.034 
0.05 1 
0.067 
0.084 
0.094 
0.104 
0.111 
0.116 
0.117 
0.119 
0.110 
0.089 
0.068 
0.068 
0.023 
0.000 

0.12! 

0.10( 

0.0Z 

- GE 
RT 

o . 0 ~  

0.025 

0.000 I I I 1 
0.2 0.4 0.6 0.8 

MOLE FRACTION 1,3 - DIOXOLANE 

3 
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Figure 5 Variation of AGEJRT with composition for 1-chlorobutane + 1, 3-dioxolane (0) and 2-chloro- 
butane + 1,3 dioxolane (B). 
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184 J. WISNIAK et al. 

Table I X  Coefficients in correlation of boiling points, Eq. 5, average % deviation and Root mean square 
dviations in temperature, rmsd (T/K). 

1,3-dioxolane (1 )  + I-chlorobutane (2) - 13.596 0.01049 - 4.8658 - 0.01 0.05 
2-chlorobutane (1)  + 1,3-dioxolane (2) - 14.899 5.3845 - 5.1755 - 0.01 0.04 
2-chlorobutane (1) + I-chlorobutane (2) - 1.8554 0.5540 - - 0.01 0.04 

' average YO deviation 

composition. The values of the parameter are positive over the entire composition 
range and fall in the order 2-chlorobutane > 1-chlorobutane due to the larger steric 
effects of the 2-chloro isomer. 

The boiling points of the three binaries were correlated by the equation proposed by 
Wisniak and Tamir': 

2 m 

T/K = xi 7;'/K + x1 X,Z Ck(xi - xj)' 
i = l  

In this equation 7;' is the boiling point of the pure component z (K or O C) and m is the 
number of terms in the series expansion of (xi - xj) .  The various constants of equation 
5 are reported in Table IX, which also contains information indicating the degree of 
goodness of the correlation. 

Glossary 

ck 
A G ~  
N 
P 

R 
rmsd (T) 

Pp 

X i ,  Yi 
Yi 

Antoine constants, Eq. 3 
Second molar virial coefficients, Eqs. 1, 2 
Constants, Eq. 5 
Excess Gibbs function 
Number of measurements 
Total pressure 
Vapor pressure of pure component i 
Gas constant 
Root mean square deviation, (C( T,,,, - Talc) } 
Boiling temperature of a mixture 
Boiling temperature of pure component i 
Molar volume of liquid component i 
Mole fraction of component i in the liquid and vapor phases 
Activity coefficient of component i 

2 0 . 5  N / 

Subscripts 

expt Experimentaf value 
calc Calculated value 
1 Component i 
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